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Abstract

Much research has focused on neurodegeneration in aging and Alzheimer's disease

(AD). We developed Scoring by Nonlocal Image Patch Estimator (SNIPE), a non-local

patch-based measure of anatomical similarity and hippocampal segmentation to mea-

sure hippocampal change. While SNIPE shows enhanced predictive power over hip-

pocampal volume, it is unknown whether SNIPE is more strongly associated with

group differences between normal controls (NC), early MCI (eMCI), late (lMCI), and

AD than hippocampal volume. Alzheimer's Disease Neuroimaging Initiative older

adults were included in the first analyses (N = 1666, 513 NCs, 269 eMCI, 556 lMCI,

and 328 AD). Sub-analyses investigated amyloid positive individuals (N = 834;

179 NC, 148 eMCI, 298 lMCI, and 209 AD) to determine accuracy in those on the

AD trajectory. We compared SNIPE grading, SNIPE volume, and Freesurfer volume

as features in seven different machine learning techniques classifying participants

into their correct cohort using 10-fold cross-validation. The best model was then vali-

dated in the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing

(AIBL). SNIPE grading provided the highest classification accuracy for all classifica-

tions in both the full and amyloid positive sample. When classifying NC:AD, SNIPE

grading provided an 89% accuracy (full sample) and 87% (amyloid positive sample).

Freesurfer volume provided much lower accuracies of 65% (full sample) and 46%

(amyloid positive sample). In the AIBL validation cohort, SNIPE grading provided a

90% classification accuracy for NC:AD. These findings suggest SNIPE grading pro-

vides increased classification accuracy over both SNIPE and Freesurfer volume.

SNIPE grading offers promise to accurately identify people with and without AD.
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1 | INTRODUCTION

Dementia is a term used to describe a range of disorders that are

caused by abnormal brain changes in aging. These abnormal changes

impair cognitive functions such as memory, language, and problem-

solving that are severe enough to interfere with daily life and indepen-

dence (Alzheimer's Association, 2021). The most common form of

dementia is Alzheimer's disease (AD), a progressive neurodegenerative

disorder defined by its underlying pathologies of β amyloid (Aβ42)

deposition, pathological tau, and neurodegeneration [AT(N)]

(Jack, 2018). Unfortunately, these pathological changes can start

years, even decades, before the onset of cognitive symptoms

(Sperling et al., 2011). Researchers must thus develop diagnostic tools

that can detect AD pathology before too much irreversible neurode-

generation occurs.

Many recent studies have attempted to improve AD classifica-

tion accuracy using various biomarkers such as cognitive testing,

positron emission tomography (PET), cerebrospinal fluid (CSF)

assays of Aβ42, tau, or magnetic resonance imaging (MRI) changes.

For example, using episodic memory test such as the California Ver-

bal Learning Test (CVLT) or Rey Auditory Verbal Learning Test

(RAVLT) yield accuracies of over 80% when predicting conversion

from mild cognitive impairment (MCI) to AD (Eckerström

et al., 2013; Rabin et al., 2009). However, predicting future progres-

sion or diagnosis from NC (or even MCI and dementia) is difficult

due to clinician subjectivity and individual patient variability. The

implementation of machine learning techniques to analyze AD-

related biomarkers may help improve early detection models and

increase classification accuracy. Furthermore, the use of imaging

techniques as opposed to cognitive tests may improve accuracies

because they are not influenced by clinician subjectivity and less

influenced by patient day-to-day variability.

Using MRI, researchers can measure neurodegeneration by ana-

lyzing volumetric changes in older adults' brains. When studying

changes due to aging, MCI, and AD, the most commonly studied area

is the hippocampus because this region experiences atrophy early in

the disease course (Fjell et al., 2014). The hippocampus has also been

identified as one of the most useful biomarkers when examining pro-

gression from MCI to AD (Risacher et al., 2009). Another method of

measuring hippocampal differences between groups is hippocampal

grading, measured by the Scoring by Nonlocal Image Patch Estimator

(SNIPE) (Coupé et al., 2012; Coupé et al., 2012; Coupé et al., 2015).

SNIPE computes the similarity of every voxel in the hippocampus

of each person to a large library of manually segmented MRI datasets

from both healthy cognitively intact older adults and an equal number

of patients with AD. This procedure compares the local neighborhood

patch surrounding the voxel to corresponding neighborhood patches

for each image volume in the library. The SNIPE score is the average

of similarity-weighted labels (i.e., �1 for AD and +1 for healthy con-

trol) from the library of individuals. When the average SNIPE score is

positive, the structure is more similar to healthy control, and when

negative, the structure is more similar to AD. The SNIPE hippocampal

segmentation method is based on the Pruessner et al. (2000)

anatomical protocol, which is very similar to the European Alzheimer's

Disease Consortium (EADC) harmonized protocol designed to maxi-

mize the difference in hippocampal volume for older adults with AD

(Frisoni et al., 2015). SNIPE grading is a similarity function that not

only takes into account volume, but also computes the similarity of

the entire structure including the texture, intensity, and shape in its

estimate of whether an individuals' hippocampus is more similar to

the AD or NC template (Coupé et al., 2012). Previous research tech-

niques have found that in addition to volume, both shape (Shen

et al., 2012) and texture (Sørensen et al., 2017) are important factors

to consider when examining memory decline and AD. The benefit of

SNIPE grading over SNIPE volume is that grading integrates several

important features (i.e., volume, shape, and texture) into one measure

to provide valuable information that cannot be obtained from volume

alone.

The additional features included in the SNIPE grading metric con-

tribute to the strong associations between grading and cognition and

AD. For example, grading has been shown to be associated with epi-

sodic memory changes in people with subjective cognitive decline and

global cognition changes in cognitively healthy older adults and peo-

ple with early MCI (Morrison et al., 2023). Furthermore, this method

has proven to classify between cognitively healthy older adults and

people with AD with an accuracy of 93% when using both the hippo-

campus and entorhinal cortex (Coupé et al., 2012). However, these

SNIPE results come from limited samples and need to be further

examined to determine their usefulness in classifying different disease

cohorts.

While automated classification of AD and MCI is widely studied

there are several limitations in the current research. To better under-

stand the potential of SNIPE to correctly classify aging and cognitive

impairment groups more research is needed on (1) larger samples and

in people with MCI, (2) people who are amyloid positive and are thus

on the AD trajectory, (3) comparing SNIPE grading and volume to

established methods such as Freesurfer, and (4) validating the results

in an external cohort to determine technique generalizability. A larger

sample is needed in these machine learning studies to reduce the

chance of overfitting and to improve generalizability to other samples.

Coupé and colleagues' papers examining SNIPE used the Alzheimer's

Disease Neuroimaging Initiative diagnosis label “AD” to differentiate

groups (2012, 2015). The problem with the ADNI AD diagnosis is

that this diagnosis is based solely on clinical scores and does not

include amyloid positivity. Based on the National Institute on Aging-

Alzheimer's Association biomarker AD profiles, an older adult with

abnormal amyloid levels (amyloid positive) is placed in the Alzheimer's

continuum, whereas someone without amyloid positivity is either

experiencing non-AD pathologic change or has normal-level AD bio-

markers (Jack, 2018). Thus, in order to correctly classify people as AD

or as NC on the disease continuum it is important to examine only

those who are amyloid positive. Specifically examining people on the

AD continuum is also necessary because they are often selected for

clinical trials and their accurate classification has the potential to fur-

ther improve clinical trial patient selection. Finally, while the current

research on SNIPE grading and volume has offered promising results
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(Coupé et al., 2012; Coupé et al., 2012; Coupé et al., 2015), SNIPE

grading methods have yet to be compared to the traditional methods

used to measure hippocampal volume (i.e., Freesurfer).

In order for the SNIPE method to be applicable in clinical

research, clinical trials, or clinical settings it is necessary to determine

whether SNIPE grading or volume provide higher classification accu-

racy than current standards in the field. Therefore, the goal of this

study was to compare classification accuracy of SNIPE hippocampal

grading and SNIPE hippocampal volume measures to Freesurfer vol-

ume. A recent review has also shown that few studies compute classi-

fications between MCI vs. AD, with most studies focusing on

classifying NC from AD (Tanveer et al., 2020). While the former is a

bit late for early intervention, the latter is not really of clinical interest.

We thus designed this study to examine classification accuracy

between healthy older adults, people early mild cognitive impairment

(eMCI) and late MCI (lMCI), and people with AD. Importantly, we also

completed these analyses separately in amyloid positive individuals,

focusing on people who are in the earliest stages of pathological AD,

are most likely to convert to AD, and are most likely to be selected for

clinical trials. Several commonly used classifiers were applied to deter-

mine which technique (i.e., SNIPE Grading, SNIPE volume or FreeSur-

fer volume) is best at classifying participants into their correct

diagnostic cohort. Including multiple techniques improves the general-

izability of our results and comparison to past research.

2 | METHODS

2.1 | Alzheimer's Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from the

Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.

loni.usc.edu). The ADNI was launched in 2003 as a public-private part-

nership, led by Principal Investigator Michael W. Weiner, MD. The pri-

mary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET), other

biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive impair-

ment (MCI) and early Alzheimer's disease (AD). Participants were

selected from ADNI-1, ADNI-2, and the ADNI-GO cohorts. The study

received ethical approval from the review boards of all participating

institutions. Written informed consent was obtained from participants

or their study partner.

All ADNI participants were imaged using a 3T scanner with

T1-weighted imaging parameters (see http://adni.loni.usc.edu/

methods/mri-tool/mri-analysis/ for the detailed MRI acquisition proto-

col). Baseline scans were downloaded from the ADNI public website.

2.2 | Participants from ADNI cohort

Participant inclusion and exclusion criteria are available at www.adni-

info.org. All participants were between the ages of 55 and 90 at the

time of recruitment, exhibiting no evidence of depression. Healthy

normal controls had no evidence of memory decline, as measured by

the Wechsler Memory Scale and no evidence of impaired global cog-

nition as measured by the Mini Mental Status Examination (MMSE) or

Clinical Dementia Rating (CDR). Both eMCI and lMCI had scores

between 24 and 30 on the MMSE, 0.5 on the CDR, and abnormal

scores on the Wechsler Memory Scale. AD was defined as partici-

pants who had abnormal memory function on the Wechsler Memory

Scale, an MMSE score between 20 and 26, a CDR of 0.5 or 1.0 and

probable AD according to the NINCDS/ADRDA criteria.

Figure 1 summarizes the methodology used to select participants

from the ADNI studies. A total of 1666 participants were selected

from ADNI-1 (n = 799), ADNI-2 (n = 776), ADNI-GO (n = 91) who

had baseline MRI scans that passed quality control, for which hippo-

campal grading and volume could be extracted (513 NC, 269 eMCI,

556 lMCI, 328 AD).

Amyloid status was derived from PET or CSF measures. ADNI

PET data was acquired on multiple PET instruments with different

acquisition sequences following various platform-specific acquisi-

tion protocols. All PET data underwent quality control and standard

image pre-processing correct steps to improve data uniformity

across collection sites. More detail can be downloaded from the

ADNI procedures manual. The AV-45 PET scans were collected

approximately 50 min post injection (Landau & Jagust, 2015). The

PiB-PET scans were collected after 50–70 min post injection of

approximately 15 mCi (Jagust et al., 2010). To obtain cerebrospinal

fluid (CSF) samples, lumbar punctions were performed as described

in the ADNI procedures manual. CSF Aβ42 were measured using the

multiplex xMAP Luminex platform (Luminex Corp, Austin, TX, USA)

with the INNO-BIA AlzBio3 kit (Innogenetics) (Olsson et al., 2005;

Shaw et al., 2009).

F IGURE 1 Flowchart summarizing the participant inclusion and
exclusion criteria based on amyloid positivity. 1The participants
included in the first analysis including the entire sample. 2Amyloid
positive participants included in the second analysis focusing on those
in the AD trajectory.
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The current definition of dementia in ADNI is solely based on

clinical assessments and does not include amyloid positivity. For this

reason, we also wanted to repeat the same analysis in a subset of

amyloid positive participants to ensure we are testing on people who

are experiencing Alzheimer's related pathological changes. To deter-

mine amyloid positivity, both CSF and PET values were used as not all

participants had both measurements available. Participants were iden-

tified as amyloid positive if they had any of the following at baseline:

(1) a standardized update value ratio (SUVR) of >1.11 on AV45 PET

(Landau et al., 2013), (2) a SUVR of >1.2 using Pittsburgh

compound-B PET (Villeneuve et al., 2015), or (3) a cerebrospinal fluid

Aβ1-42 ≤ 980 pg/mL as per ADNI recommendations. Of the 1666

participants selected, 1328 had baseline amyloid levels available to

determine amyloid positivity (427 NC, 263 eMCI, 400 lMCI, 238 AD)

and of those, 834 were amyloid positive (179 NC, 148 eMCI,

298 lMCI, 209 AD) and 494 were amyloid negative (248 NC,

115 eMCI, 102 lMCI, 29 dementia).

2.3 | Participants from AIBL cohort

Participant inclusion and exclusion criteria for the Australian Imaging,

Biomarker & Lifestyle Flagship Study of Ageing (AIBL) have been pre-

viously full described (Ellis et al., 2009). Briefly, healthy controls were

60+ and in good general health with no evidence of cognitive impair-

ment. Those with MCI had to score < 28/30 on the MMSE, and have

abnormal scores on the Wechsler Memory Scale, and a CDR score of

0.5 or greater. AD patients were characterized by the NINCDS-

ADRDA criteria (McKhann et al., 1984). There were 858 participants,

of these participants only 581 participants had baseline MRIs that

passed quality control for which hippocampal grading and volume

could be extracted were included (413 NC, 90 MCI, 78 AD).

2.4 | Structural MRI processing

Raw T1w scans for each participant were pre-processed through our

standard pipeline including noise reduction (Coupé et al., 2008), intensity

inhomogeneity correction (Sled et al., 1998), and intensity normalization

into the range 0–100. The pre-processed images were then linearly

(9 parameters: 3 translation, 3 rotation, and 3 scaling) (Dadar et al., 2018)

registered to the MNI-ICBM152-2009c average (Fonov et al., 2011). The

quality of the linear registrations was visually verified by an experienced

rater (author M.D.), blinded to diagnostic group. Only seven datasets did

not pass this quality control step and were discarded.

2.5 | SNIPE grading and volume

Scoring by Nonlocal Image Patch Estimator (SNIPE) was used to seg-

ment the hippocampus and measure the extent of AD-related change

within the hippocampus using the linearly registered preprocessed

T1-weighted images (Coupé et al., 2012; Coupé et al., 2012). The

SNIPE procedure used has been previously described in detail (Dadar

et al., 2020). In short, this technique uses a set of MRI volumes with

manually segmented hippocampi as training library from both healthy

aging subjects (CN) and patients with dementia due to AD. For each

voxel from the subject under study that falls within a bounding box

containing the medial temporal lobe region, a 3D 7 � 7 � 7 patch

centered around that voxel is compared with corresponding patches

from the N = 100 MRI volumes (50 CN and 50 AD) in the training

library. It is important to note that the 100 subjects used to create the

training library were excluded from the analyses in the current paper.

An intensity-based similarity metric (or “weight”) between the patch

under study and the training patch was then computed. These esti-

mated weights were used to perform grading of the hippocampus

based on the clinical label (CN vs. AD) of the training subjects:

g xið Þ¼

PN
s¼1

P

j � Ω
w xi,xs,j
� �

:Ps

PN
s¼1

P

j � Ω
w xi,xs,j
� �

where xi is the target voxel, and g xið Þ is the corresponding grading

value, and Ω is the search area. w xi ,xs,j
� �

shows the similarity metric

between surrounding patches of target voxel i and voxel j from train-

ing subject s. Ps is the clinical label of the training subject: we set it to

�1 for AD patients and+1 for normal healthy subjects. This means that

when a patch resembles CN anatomical characteristics more than AD,

the grading score will be positive, conversely, if the patch is more similar

to AD anatomy, the grading score is negative. The final SNIPE hippo-

campal grading score is an average of all the voxels within this structure

in each hemisphere (see Figure 2 for an example pipeline of SNIPE).

In this method (SNIPE), volumes are calculated by counting voxels

in a pseudo-Talairach stereotaxic space (ICBM152 template), thus cor-

recting for subject's head size. The other benefit of SNIPE is that it

addresses intersubject variability by using one-to-many mapping

between each individual's anatomy and those of the training tem-

plates. The quality of the SNIPE segmentations were visually verified

(author N.S.), blinded to diagnostic group. Only 11 datasets did not

pass this quality control step and were discarded from the analyses.

2.6 | FreeSurfer volumes

Freesurfer volumes were used to complete the classification analysis

with the ADNI data. The volumes were provided by ADNI, completed

using the standard protocols developed and implemented by The Uni-

versity of California, San Francisco (UCSF). For a more detailed expla-

nation of the pre-processing and quality control guidelines, please see

the full UCSF FreeSurfer Overview and QC Guide.

2.7 | Classification analysis

To assess the prediction power of each measure, a classification scheme

with 10-fold cross validation was used. Specifically, SNIPE grading,

SNIPE volume, or Freesurfer volume scores for the left and right HC

were summed and used as features along with participant age and sex.
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To ensure that the potential differences in the distribution of the random

splits in the cross-validation folds do not impact the results, the same

splits were consistently used for assessment of the performance of the

three features evaluated with a support vector machine (SVM) classifier

implemented within Scikit-Learn (https://scikit-learn.org/). The default

parameters were used for this classifier including: Bayesian optimization

(bayesop), Acquisition Function Name was “expected-improvement-per-

second-plus,” Empirical prior probability, 10 grid divisions were used

(i.e., NumGridDivisions), and 30 was the maximum number of objective

function evaluations (i.e., MaxObjectiveEvaluations). To facilitate compar-

ison with other studies in the literature and to ensure that the results are

not classifier dependent, six other classifiers were examined: decision

tree, error-correcting output codes, binary Gaussian kernel, binary linear,

and random forests. The default parameters were used for each classifier

and are presented in Table S1. All analyses were performed using

MATLAB version 9.7.

Independent validation of the classification was completed using

NC, MCI, and AD participants from the AIBL cohort. While ADNI clas-

sifies MCI participants into either eMCI or lMCI, AIBL only uses MCI.

For that reason classification models for NC:MCI and MCI:AD were

created using only the ADNI training set: (1) with both eMCI and lMCI

participants, (2) with only the eMCI participants, and (3) with only the

lMCI participants. Importantly, AIBL data was used only for indepen-

dent validation of these three models. No AIBL data was used in the

creation of these models, nor for any parameter adjustment.

2.8 | Statistical analysis

Demographic information between groups was compared using inde-

pendent sample t-tests and corrected for multiple comparisons using

Bonferroni correction.

F IGURE 2 Overview of the SNIPE method. (a) New participant (either NC, eMCI, lMRI, or AD subject) MRI images input into the method. From a
collection 50 NC subjects and 50 AD subjects in the training library, the Nmost similar NC templates and Nmost similar AD templates are selected for
SNIPE processing (where 2N < 100). A very generous medial temporal lobe mask (not shown) is used to limit the number of voxels under consideration.
For each voxel within this mask, the blue outline represents an example 3D 7 � 7 � 7 voxel patch that is centered around the specific voxel. (b) This
patch is then compared and matched to nearby corresponding patches from pre-selected NC and AD subjects. (c) The voxel grading score is an average
over matching patches from NC (red or +1) or AD (blue or �1), weighted by the patch similarity (rightmost images show grading maps for typical NC,
eMCI, lMRI, or AD subjects). The grading scores are averaged over all voxels to yield a SNIPE grading for the left and the right hippocampus. NC,
normal control. EMCI, early mild cognitive impairment. LMCI, late mild cognitive impairment. AD, Alzheimer's disease. NC1 to NCN, normal control
participants, preselected from the training library. AD1 to ADN, Alzheimer's disease participants, preselected from the training library.
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3 | RESULTS

3.1 | Demographic and clinical results in ADNI

Table 1 provides the demographic characteristics for all participants

separated by group for both the full sample and amyloid positive sub-

group.

Several demographic and clinical factors differed between sub-

groups in the full sample after correction for multiple comparison.

With respect to age differences, eMCI were significantly younger than

NC (t = 6.84, p < .001), people with lMCI (t = 5.74, p < .001), and

people with AD (t = 6.71, p < .001). AD had significantly lower educa-

tion than NC (t = 5.84, p < .001), people with eMCI (t = 3.54,

p < .001), and lMCI (t = 3.59, p < .001). All groups significantly dif-

fered in ADAS-13 scores, with scores progressively increasing with

each stage of decline (NC:eMCI, t = �8.31, p < .001; eMCI:lMCI,

t = �13.89, p < .001; and lMCI:AD, t = �21.51, p < .001). Similarly,

all groups significantly differed in CDR-SB scores, with scores pro-

gressively increasing with each stage of decline (NC:eMCI,

t = �26.44, p < .001; eMCI:lMCI, t = �6.01, p < .001; and lMCI:AD,

t = �28.51, p < .001).

Demographic differences were also observed in the amyloid posi-

tive sub-analysis. After correction for multiple comparisons, eMCI

were younger than only NC (t = 3.49, p < .001). No group differences

were observed in education after correction for multiple comparisons.

All groups significantly differed in ADAS-13 scores, with scores pro-

gressively increasing with each stage of decline (NC:eMCI, t = �7.12,

p < .001; eMCI:lMCI, t = �10.16, p < .001; and lMCI:AD, t = �15.83,

p < .001). Similarly, all groups significantly differed in CDR-SB scores,

with scores progressively increasing with each stage of decline (NC:

eMCI, t = �18.34, p < .001; eMCI:lMCI, t = �3.49, p < .001; and

lMCI:AD, t = �24.07, p < .001).

3.2 | Classification results in ADNI

Table 2 shows the participant classification accuracy, sensitivity, and

specificity scores for SNIPE grading, SNIPE volume, and Freesurfer

volume for each analysis using SVM. Accuracy, sensitivity, and speci-

ficity obtained using the other classifiers are available in Table S2.

The highest classification accuracy was obtained using SNIPE

grading, followed by SNIPE volume, then Freesurfer. This order was

obtained for all group classifications in both the full sample and amy-

loid positive sample. When examining NC vs. AD classification, SNIPE

grading provided an accuracy of 89% (±4) compared to 80% (±4) for

SNIPE volume and 65% (±12) obtained using Freesurfer. When exam-

ining NC vs. AD in the amyloid positive sample SNIPE grading accu-

racy dropped by only 2% to 87% (±2). On the other hand, SNIPE

volume accuracy dropped by 4% to 76% (±5) and Freesurfer classifica-

tion accuracy dropped to 46% (±11), a difference of 19%. In the NC

vs. eMCI classification, SNIPE grading obtained the highest with 70%

(±4) accuracy compared to SNIPE volume with 68% (±3) and Freesur-

fer volume with only 62% (±6). When comparing NC vs. eMCI in the

amyloid positive sample SNIPE grading obtained the highest accuracy

compared to SNIPE volume and Freesurfer volume (63% ± 6 vs. 59%

± 5 and 56% ± 10, respectively).

In the eMCI vs. lMCI classification, SNIPE grading and SNIPE vol-

ume obtained the highest with 67% (±5) accuracy compared to

TABLE 1 Demographic information
for cognitively normal, early and late
MCI, and AD participants.

NC eMCI lMCI AD

Full sample n = 513 n = 269 n = 556 n = 328

Age 74.36 ± 5.79 70.82 ± 7.38 73.99 ± 7.53 75.00 ± 7.78

Education 16.35 ± 2.71 15.93 ± 2.65 15.90 ± 2.92 15.16 ± 3.01

Female sex 265 (52%) 120 (45%) 215 (39%) 147 (45%)

ADAS-13 9.30 ± 4.54 12.59 ± 5.54 18.70 ± 6.53 29.95 ± 7.90

CDR-SB 0.05 ± 0.19 1.29 ± 0.75 1.65 ± 0.92 4.45 ± 1.62

NC eMCI lMCI AD

Amyloid positive n = 179 n = 148 n = 298 n = 209

Age 74.81 ± 5.68 72.29 ± 7.11a 73.51 ± 7.14 74.16 ± 8.01

Education 16.22 ± 2.67 15.83 ± 2.74 16.00 ± 2.87 15.44 ± 2.79

Female sex 86 (62%) 62 (42%) 121 (41%) 93 (44%)

ADAS-13 9.64 ± 4.62 13.70 ± 5.46 19.77 ± 6.65 30.74 ± 8.21

CDR-SB 0.06 ± 0.27 1.40 ± 0.84 1.70 ± 0.91 4.53 ± 1.60

Note: Values are expressed as mean ± standard deviant, or number (percentage %). Female sex is

represented as total number of sample and percentage of sample.

Abbreviations: AD, Alzheimer's disease; ADAS-13, Alzheimer's Disease Assessment Scale–Cognitive
Subscale; CDRSB, Clinical Dementia Rating Scale—Sum of Boxes; eMCI, early mild cognitive impairment;

lMCI, late mild cognitive impairment; NC, cognitively normal controls.
aeMCI were younger than NC.
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Freesurfer volume with 53% (±14). When comparing eMCI vs. lMCI in

the amyloid positive sample SNIPE grading and volume accuracies did

not change while Freesurfer accuracy dropped 2 to 51% (±14). In the

lMCI vs. AD classification, SNIPE grading obtained the highest with

68% (±6) accuracy compared to SNIPE volume at 63% (±5) and Free-

surfer with 60% (±7). When comparing lMCI vs. AD in the amyloid

positive sample SNIPE grading once again provided the highest classi-

fication accuracy compared to SNIPE volume and Freesurfer volume

(67% ± 4 vs. 58% ± 4 and 57% ± 4, respectively).

It is interesting to note that in all experiments, the standard devia-

tion of the Freesurfer volume classification accuracy is much larger

that SNIPE grading or SNIPE volumes except for lMCI:AD.

3.3 | Classification results in the AIBL cohort
(external validation)

In the first set of classification results, we observed that SNIPE grading

and volume were both more accurate than using hippocampal volumes

obtained using Freesurfer at classifying groups. For that reason, in this

validation procedure only SNIPE grading and volume were compared

because both these techniques outperformed hippocampal volumes

obtained using Freesurfer. Furthermore, given the similar prediction

accuracies between the different classifiers, this external validation was

completed using only the SVM classifier. Table 3 shows the participant

classification accuracy, sensitivity, and specificity scores for SNIPE grad-

ing and SNIPE volume for each analysis using SVM.

The highest classification accuracy was obtained using SNIPE

grading over SNIPE volume for almost all analyses. When examining

NC vs. AD classification, SNIPE grading provided an accuracy of 90%

compared to 80% for SNIPE volume. In the NC:MCI prediction, accu-

racy for SNIPE grading was higher than SNIPE volume 55% vs. 41%

(trained with eMCI and lMCI) and 74% vs. 64% (trained with lMCI

only), but higher for SNIPE volume over SNIPE grading 82% vs. 79%

(trained with eMCI only). In the MCI:AD prediction, accuracy for

SNIPE grading was higher than SNIPE volume in all three training

cases, 66% vs. 54% (trained with eMCI and lMCI), 65% vs. 59%

(trained with eMCI only), 66 vs. 54% (trained with lMCI only).

3.4 | Correlation analysis

To further explore why SNIPE grading and volume exhibited improved

accuracy over Freesurfer volume, additional exploratory correlations

were completed to examine the strength of the association between

both SNIPE measures (volume and grading) to Freesurfer volume indi-

vidually for each group. These findings are presented in Table 4. All

significant associations between SNIPE and Freesurfer showed only a

moderate correlation. The only moderate correlation indicates that

the different procedures (e.g., SNIPE vs. Freesurfer) are not measuring

the same aspects of the hippocampus. This only moderate correlation

may explain why the differences in classification accuracy were so

large in some cases.T
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4 | DISCUSSION

In recent years, numerous studies have implemented machine learning

techniques on imaging data with the goal of accurately classifying and

predicting people with dementia and more specifically AD (see

Tanveer et al., 2020 for review). The current study expands on the

current findings by comparing classification accuracy on a large sam-

ple of NC, and people with eMCI, lMCI, and AD (and with MCI and

AD in AIBL), examining only those on the AD-trajectory by focusing

on those who are amyloid positive, and by employing a relatively new

method to detect hippocampal changes that incorporates texture,

intensity, shape, and volume into one metric. The findings observed

here show that SNIPE grading has higher classification accuracy than

both SNIPE volume and Freesurfer volume when classifying: (1) NC:-

AD, (2) NC:eMCI, (3) eMCI:lMCI, and (4) lMCI:AD in both the full sam-

ple and the amyloid positive sub-sample of ADNI and when

classifying (1) NC:AD, (2) NC:MCI, and (3) MCI:AD in the AIBL cohort.

These findings complement those previously completed on SNIPE

grading and volume (Coupé et al., 2012; Coupé et al., 2012; Coupé

et al., 2015). They found that SNIPE grading could classify between

NC and AD with 93% accuracy using both hippocampal and entorhinal

cortex grading (Coupé et al., 2012). Coupé et al. (2012) also observed

that grading was more accurate than volume at classifying progressive

MCI vs. stable MCI. The current study also found high accuracy (89%)

when classifying NC vs. AD using only hippocampal grading and

observed the novel finding that when focusing on those in the AD tra-

jectory (amyloid positive) the results also remained high (87%). This

finding of high accuracy in the amyloid positive group is important

when attempting to differentiate those who are at different points on

the AD trajectory. High accuracy at identifying those at different

stages of the AD trajectory is important for clinical trials and further

shows the importance of these results. Future work should determine

the predictability of SNIPE at determining which amyloid positive NC

will convert to pathological AD. It should be noted, however, that

while we are examining people on the AD trajectory based on amyloid

positivity, that we do make claims for the ability of SNIPE to differen-

tiate between amyloid positive and amyloid negative individuals.

Compared to Freesurfer, SNIPE measures provided higher classifi-

cation accuracy for all group classifications. The comparison of SNIPE

to Freesurfer is essential in determining the usefulness of SNIPE

because Freesurfer is a common method used to examine volume

changes in AD. A quick MEDLINE search shows almost 600 papers

with the keywords of Freesurfer and AD. Furthermore, Freesurfer vol-

umetric measures are provided for the hippocampus in ADNI. While

Freesurfer is somewhat accurate at classifying NC vs. AD (65%), grad-

ing was much more accurate (89%), with a 24% improvement in classi-

fication accuracy. Similarly, differentiating between NC vs. AD in

amyloid positive group the classification was much more robust with

grading compared to Freesurfer (87% vs. 52%), with grading offering

35% higher accuracy. These findings show that Grading is more sensi-

tive than Freesurfer to hippocampal differences that occur in AD com-

pared to NC. It should be noted that while we use the term AD to

refer to both the full-sample based on clinical diagnosis and theT
A
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amyloid positive sub-sample, the full sample represents AD and other

dementias. Thus, these findings suggest that not only is grading accu-

rate at detecting to hippocampal changes due to dementia but is also

highly accurate at classifying between NC and AD subjects who are

on the AD path.

There are a few important benefits of using the SNIPE grading

scores proposed here regarding the robustness of the method. In the

1666 MRI volumes processed, only 7 failed stereotaxic registration

and 11 failed SNIPE segmentation. Robustness is important in clinical

trials since losing data to pipeline failures results in reduced power to

detect group differences. In addition to being more accurate than

Freesurfer at detecting group differences, SNIPE also had a lower

standard deviation. For example, when classifying NC vs. AD in the

full sample Freesurfer had a standard deviation (SD) of 12% which is

three times higher than the SNIPE grading SD at only 4%. This finding

was also observed in the amyloid positive NC vs. AD classification

(11% SD for Freesurfer and 2% SD for SNIPE). Higher SD was

observed for Freesurfer in all classification analysis. Lower SD and

higher accuracy using SNIPE is because this method takes into

account macroscopic changes in anatomy reflected in MRI texture by

computing similarity between a subject and a template library of NCs

and people with AD. Essentially, this technique computes anatomic

similarity of the medial temporal lobe structures between each subject

and the NC and AD templates to determine if they are more similar to

NC or AD. Using MRI texture is thus much more specific than volume

measurements, which is why SNIPE grading is better than both Free-

surfer volume and SNIPE volume. SNIPE volume was also observed to

have higher accuracy than Freesurfer volume in almost all cases. This

higher accuracy in SNIPE volume over Freesurfer volume may be

related to the anatomical definition that drives the estimated volume.

As mentioned, SNIPE is based off the Pruessner anatomical protocol

which is similar to the EADC harmonized protocol which was specifi-

cally designed to maximize the difference observed between cogni-

tively healthy older adults and people with Alzheimer's disease by

including substructures known to have high NC:AD effect sizes.

Therefore, the SNIPE method was designed to detect subtle differ-

ences between the groups that may not observed using Freesurfer.

Similar classification accuracies were also obtained when validat-

ing our results in the independent AIBL cohort. We obtained a high

accuracy of 90% when classifying NC vs. AD in the AIBL cohort. Accu-

racies similar to those observed using the ADNI dataset were also

observed in the AIBL NC vs. MCI and MCI vs. AD classification. These

findings suggest that the classification model is not only accurate in

the ADNI dataset but is generalizable to and replicable in other data-

sets. In a recent meta-analysis, authors found that almost 30% of

articles reviewed use the test set in the training process, thus double

dipping during their evaluation (Ansart et al., 2021). This finding fur-

ther emphasizes the importance of the current study using cross-

validation in the original dataset as well as using an independent

cohort for validation.

The results found here are better or equivalent to past machine

learning techniques that attempt to classify different disease cohorts

from each other and NCs (see Tanveer et al., 2020). The majority of

the studies examined in the above-mentioned review focused on only

classifying NC vs. AD, with less than 25% of the 60 studies using

SVM to classify between MCI and AD and just over 30% classifying

between NC and MCI (Tanveer et al., 2020). In order to target early

diagnosis of AD, researchers must be able to correctly classify

between MCI and AD. In our sample, we were able to differentiate

between eMCI vs. lMCI and lMCI vs. AD with almost 70% accuracy.

Although there is some research that has shown similar success the

novelty and advantage of the current results is that we employed a

larger sample to improve generalizability, examined those on the AD

trajectory (by studying amyloid positive groups), and classified people

with eMCI vs. lMCI. Furthermore, we also validated these results in an

independent cohort of NCs, MCI, and AD. These findings show prom-

ise for the use of SNIPE grading as a powerful MRI-based feature that

could be used in conjunction with other data to improve classification

of patients into the correct disease cohort. Future research should

examine whether SNIPE grading is useful at detecting which amyloid

positive subjects will cognitively decline and develop AD. Early detec-

tion of AD will not only improve a clinicians' ability to provide effec-

tive care to patients but also potentially improve selection of patients

for clinical trials. It should be noted that a limitation of the current

study was our inability to separate the AIBL participants based on

amyloid positivity because this measure was not available within the

LONI database at the time of this study. Therefore, our validation on

the AIBL cohort does not consider amyloid status. This restriction is a

limitation of this study because this analysis would not target those

who are on the AD continuum.

5 | CONCLUSION

The current paper observed that SNIPE grading scores provided

higher classification accuracy than both SNIPE volume and Freesurfer

volumes. Importantly, this classification accuracy remained similar in

the independent validation analysis using the AIBL cohort. These find-

ings suggest that HC grading offers promise as a method to accurate

classify those with and without AD. Future work should examine

TABLE 4 Correlation between SNIPE grading, SNIPE volume, and Freesurfer Volume for the full ADNI sample.

NC eMCI lMCI AD

SNIPE grading vs.

Freesurfer volume

r = .52, t = 13.08, p < .001 r = .66, t = 13.73, p < .001 r = .73, t = 22.33, p < .001 r = .69, t = 15.40, p < .001

SNIPE volume vs.

Freesurfer volume

r = .51, t = 12.65, p < .001 r = .63, t = 12.72, p < .001 r = .68, t = 19.67, p < .001 r = .67, t = 14.55, p < .001
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whether HC grading is predictive of future conversion from NC to

MCI and dementia.
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